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ELECTROMAGNETIC SOUNDING OF OIL AND GAS FORMATIONS

UDC 532.546:550.820.7N. K. Korsakova and V. I. Pen’kovskii

A mathematical model is proposed that describes electrical conductivity variation in the near-well
zone during drilling formations containing three immiscible phases: oil, gas, and a small amount
of native salt water. It is assumed that borehole drilling is performed using a clay–water solution,
the mass-exchange process between the moving mud filtrate and immovable native water is infinitely
fast, and displacement of the gas phase occurs by piston flow. The redistribution of the immiscible
phases is described by the conventional Buckley–Leverett equations. The electromagnetic response of
the medium is interpreted using the earlier proposed method of probabilistic convolutions.

Key words: three-phase filtration, mass exchange, electrical conductivity, mud filtrate, electro-
magnetic sounding.

Introduction. A radically new method of interpreting electromagnetic sounding data from boreholes pen-
etrating aquifers and oil and gas formations is proposed in [1]. The method is based on mathematical modeling of
the processes involved in drilling mud filtrate invasion: immiscible filtration of fluids, instantaneous salt exchange
between the moving water filtrate and connate native salt water; use is made of the focusing properties of devices
of high-frequency isoparametric induction logging (HFIIL) or high-frequency electromagnetic logging (HFEL).

The representation of the induction resistivities R̄i in the form of integral convolutions

R̄i =

∞∫
0

R(r)ρi(r)r dr (1)

of the actual electric resistivities R(r) of annular segments of the near-well zone with the spatial distribution density
of the detector sensitivities

ρi =
1

2
√

2πσxi

exp
(
− σ2

2

)
exp

(
− 1

2σ2
ln2 x

xi

)
gives the functional relationship between the resistivities R̄i and the initial physical characteristics of the formations.
Here xi = r2

i , x = r2 (ri are the centers of sensitivities), σ is the dispersion of the device, and r is the radial
coordinate. More details of the method and examples of its use can be found in a paper [2], which gives typical
sounding curves for three cases of invasion: into aquifers, oil formations, and gas formations.

In the case of filtrate invasion into aquifers, the distribution of the actual resistivity in the near-well zone
is a piecewise constant function whose plot consists of two steps. In the other two cases of filtrate invasion, some
simplifying assumptions allow the resistivity curve to be plotted as three steps, one of which corresponds to the
low resistivity of the annulus. Since the dynamic viscosity of the gas is lower than the viscosities of the liquid
fluids, the filtrate invasion into gas formations is close to a piston-like displacement. As noted in [2], in this case of
invasion, the annulus resulting from fast salt exchange between the water solutions is rather narrow, and, as a rule,
is not detected by HFIIL devices: numerous data interpretations have shown that the dimensionless parameter σ

characterizing the focusing properties of the sondes is approximately 0.7. Below, we consider the more complex
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case of mud filtrate invasion into to a formation which is originally saturated with three immiscible phases: oil, gas,
and connate native salt water.

1. Mathematical Model of Filtrate Invasion into a Formation. In hole drilling, the effect of capillary
forces is less significant than that of hydrodynamic forces. Under these conditions, the axisymmetric three-phase
immiscible filtration in the near-well zone can be described by the Buckley–Leverett system [3]

1
r

∂

∂r
(rvi) + m

∂si

∂t
= 0, vi = −kifi

∂h

∂r
, (2)

where r is the coordinate, t is time, and m is the porosity, and i = 0, 1, and 2 (the subscript 2 refers to oil and the
subscripts 0 and 1 refer to the gas and water phases, respectively). The first three equations of system (2) are the
mass conservation laws for the moving phases and the next three are the generalized Darcy laws linking the radial
velocities of motion vi to the head gradient h, which is identical for all phases. The filtration coefficients ki are
inversely proportional to the dynamic viscosities µi of the phases and proportional to the formation permeability,
and the relative phase permeabilities fi are usually expressed as power functions sn

i (n ≈ 3.5) of the effective
saturations. Since

∑
si = 1, system (2) has the first integral

r(v2 + v0 + v1) = rwV (t), (3)

where rw is the borehole radius and V (t) is the total volume velocity of the phases.
Introducing the generalized Leverett functions

Fi(s2, s0) = αifi(si)∑
i

αifi(si)

( ∑
i

Fi = 1, αi = µi/µ1, α1 = 1, α2 6 1, α0 � 1
)
,

from the laws of phase motion and formula (3) we obtain the following expressions for the phase filtration velocities:

rvi = Fi(s2, s0)rwV (t). (4)

System (2) is simplified to

∂s0

∂τ
+

∂F0

∂s2

∂s2

∂x
+

∂F0

∂s0

∂s0

∂x
= 0,

∂s2

∂τ
+

∂F2

∂s2

∂s2

∂x
+

∂F2

∂s0

∂s0

∂x
= 0, (5)

where

τ =
2

mrw

t∫
0

V (t) dt, x = (r/rw)2

are new independent variables. The variable τ is linked to the standard radius rn of volume filtrate invasion into
the formation by the relation rn = rw

√
1 + τ . Let s0

2, s0
1, and s0

0 = 1 − (s0
2 + s0

1) be the initial oil, water, and gas
saturations of the formation, respectively. The mobility of each phase depends largely on the product αifi. Other
conditions being equal, the gas phase has the highest mobility (α0 ≈ 50), and, hence, its displacement by fluids is
close to piston flow. At the water–oil or water–gas (i = 0) displacement fronts r = rfi

, the kinematic conditions

vi(rfi
− 0, t)− vi(rfi

+ 0, t) = m[si(rfi
− 0)− si(rfi

+ 0)]
∂rfi

∂t
(6)

implied by the integral laws of mass conservation should be satisfied [3].
Depending on the relation between the oil (s0

2) and gas (s0
0) saturations of the formation, two cases are

possible: 1) at all times, the gas displacement front is ahead of the oil displacement front (rf0 > rf ); 2) the
gas saturation of the formation is so small that the gas displacement front lags behind the oil displacement front
(rf0 < rf ). In the first case, from Eq. (6) and relation (4) for i = 0 with the initial condition rf0 = rw, we obtain

rf0 = rw

√
1 + τF0(s0

2, s
0
0)/s0

0. (7)

In the case of piston-like displacement, the gas saturation distribution in the near-well zone of the formation has
the form of a piecewise constant function: s0 ≡ 0 for rw < r < rf0(τ) and s0 ≡ s0

0 for r > rf0(τ) [rf0 is defined by
formula (7)]. This distribution corresponds the transfer equation

∂s0

∂τ
+

F (s0
2, s

0
0)

s0
0

∂s0

∂x
= 0,
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which is formally obtained from the first equation of system (5) for ∂s2/∂x = ∂s0/∂x = 0 and

∂F0

∂s2
≈ ∆F0

∆s0
=

[F0(s0
2, s

0
0)− F (s0

2, 0)]
s0
0

=
F0(s0

2, s
0
0)

s0
0

.

The second equation of system (5) becomes

∂s2

∂τ
+

∂F2

∂s2
(s2, 0)

∂s2

∂x
= 0, 1 < x 6 xf =

( rf

rw

)2

. (8)

The function F (s2, 0) coincides with the conventional Leverett function for two-phase filtration, and the
behavior of the solutions of Eq. (8) is the same as found previously in [1, 2]. In particular, the following properties
are the most important. If the initial oil saturation of the formation s0

2 is higher than the maximum points s2 = smax,
at which ∂2F2(s2, 0)/∂s2

2 = 0, then the solution s2 = s2(x, τ) is discontinuous and the saturation at the displacement
front sf < s0

2 is a solution of the transcendental equation

sf = s0
2 +

[F2(sf , 0)− F2(s0
2, 0)]

∂F2(sf , 0)/∂s2
, (9)

which follows from the kinematic condition (6). For s0
2 6 smax, the solution s2 = s2(x, τ) is continuous and sf = s0

2.
The position of the oil displacement front is calculated by the formula

rf = rw

√
1 + τ

∂F2

∂s2
(sf , 0), (10)

and the oil saturation averaged over the area of the displacement zone 〈s2〉 does not depend on time and is defined
as

〈s2〉 = sf −
F2(sf , 0)

∂F2(sf , 0)/∂s2
. (11)

Let us consider the second case (the case of small s0
0) with rf0 < rf . According to the piston-like displacement

scheme, we have s0 = 0 for r < rf0 and s0 = s0
0 for rf0 < r < rf . For all r, except for the point r = rf0 , we have

∂s0/∂r = 0. Therefore, in this case, too, the equation of the sought function s2(x, τ) is similar to Eq. (8). The
difference is that the generalized Leverett function F2(s2, s0) does not coincide with the function F2(s2, 0) for all
r. In the interval rf0 < r < rf , F2(s2, s0) = F2(s2, s

0
0). However, since s0

0 is a small quantity relative to the initial
oil saturation s0

2, in calculations one can ignore this difference and use approximations of the form (9)–(11). The
position of the gas displacement front is calculated with reasonable accuracy by the formula

rf0 = rw

√
1 + τF0(〈s2〉, s0

0)/s0
0,

which is obtained from the kinematic condition (6) assuming that the oil saturation s can be replaced by the average
integral quantity 〈s2〉 which does not depend on the position of the front rf .

2. Effect of Filtrate Invasion on the Electrical Conductivity of the Near-Well Zone. The electrical
conductivity of a stratum can depend on its mineral composition, the degree of saturation of the pore space with
electrolytes, salt concentration (more accurately, ionic strength of electrolytes), temperature, and other factors. As
follows from the Archi law [4], other things being equal, the electric resistivity of a stratum of given composition
is in inverse proportion to the square of the saturation of its pore space with electrolytes. Invasion of a water mud
filtrate with a certain salt content cp into a formation containing oil, gas, and relatively immovable native salt water
with an unknown salt content c0 is accompanied by fast salt exchange between these solutions. For simplification,
we assume that in the region r ∈ (rw, rf ), the function s2(x, τ) can be replaced by the area-averaged oil saturation
〈s2〉, which, according to formula (11), does not depend on the position of the front rf and is determined only by
the initial value of s0

2. A diagram of interaction of the solutions for the case rf0 > rf is given in Fig. 1. Figure 1a
gives the water phase distribution and the salt content in the near-well zone ignoring mass exchange, and Fig. 1b
gives the same quantities for the case of infinitely fast exchange [2].

For a solution with a salt concentration cp, the mass balance equation is written as

(r2
f − r2

w)(s0
2 − 〈s2〉) + (r2

f0 − r2
w)s0

0 = (r2
0z − r2

w)(1− 〈s2〉).
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From this equation, the position of the boundary (r = r0z) separating these two solutions is given by the formula

r0z =
√

[s0
0r

2
f0

+ (s0
2 − 〈s2〉)r2

f + s0
1r

2
w]/(1− 〈s2〉). (12)

The same result is obtained from the mass balance equation for salts dissolved in formation water with concentra-
tion c0.

Taking into account the distribution of formation saturations with water solutions with concentrations cp or
c0 and using the Archi law, we obtain four electric resistivity values for each of the zones shown in Fig. 1b:

R =


Rn = R0

n/(1− 〈s2〉)2, r ∈ (rw, r0z),
R0z = R0[(1− s0

2 − s0
0)/(1− 〈s2〉)]2, r ∈ (r0z, rf ),

Rf = R0[(1− s0
2 − s0

0)/(1− s0
2)]

2, r ∈ (rf , rf0),
R0 = R0/(1− s0

2 − s0
0)

2, r ∈ (rf0,∞).

(13)

Here R0 is the electric resistivity of the formation with complete native water saturation and R0
n is the electric

resistivity of the same formation with complete mud filtrate saturation.
As the initial gas content of the formation s0

0 decreases, the gas displacement front rf0 approaches the oil
displacement front rf . The length of the interval (rf , rf0) tends to zero, and the effect of the resistivity Rf on the
results of calculation of the induction resistivities R̄i using formula (1) becomes insignificant. In the case of small
s0
0 (rf0 < rf ), the mass balance equation for salts in a solution with a salt content cp is written as

(r2
f − r2

w)(s0
2 − 〈s2〉) + (r2

f0 − r2
w)s0

0 = (r2
0z − r2

w)(1− 〈s2〉)− (r2
0z − r2

f0)s
0
0.

From this we obtain the following formula for the radius r0z of the resistivity annulus:

r0z =
√

[(s0
2 − 〈s2〉)r2

f + s0
1r

2
w]/(1− 〈s2〉 − s0

0). (14)

The electric resistivity distribution in the formation can be given by a piecewise constant function consisting of four
steps:

R =


Rn = R0

n/(1− 〈s2〉)2, r ∈ (rw, rf0),
Rf0 = Rn[(1− 〈s2〉)/(1− 〈s2〉 − s0

0)]
2, r ∈ (rf0, r0z),

R0z = R0[(1− s0
2 − s0

0)/(1− 〈s2〉 − s0
0)]

2, r ∈ (r0z, rf ),
R0 = R0/(1− s0

2 − s0
0)

2, r ∈ (rf ,∞).

(15)

For s0
0 = 0, formulas (12) and (14) coincide with each other and with the expression for the radius of the annulus r0z

in oil formations obtained in [2]. Assuming that the centers ri of sensitivities of the detector is a current coordinate,
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from representation (1), we find the induction resistivities for any number of sondes with identical isoparameters [5].
According to the induction resistivities calculated by formulas (13) and (15), we obtain the following expressions:

R̄(ri) =
Rn −Rf0

2

[
1 + erf

( 1√
2σ

ln
xf0

xi
− σ√

2

)]
+

Rf0 −R0z

2

[
1 + erf

( 1√
2σ

ln
x0z

xi
− σ√

2

)]

+
R0z −R0

2

[
1 + erf

( 1√
2σ

ln
xf

xi
− σ√

2

)]
+ R0

for rf0 < rf and

R̄(ri) =
Rn −R0z

2

[
1 + erf

( 1√
2σ

ln
x0z

xi
− σ√

2

)]
+

R0z −Rf

2

[
1 + erf

( 1√
2σ

ln
xf

xi
− σ√

2

)]

+
Rf −R0

2

[
1 + erf

( 1√
2σ

ln
xf0

xi
− σ√

2

)]
+ R0

for rf0 > rf . Here (xi = (ri/rw)2, xf = (rf/rw)2, x0z = (r0z/rw)2, and xf0 = (rf0/rw)2 (i = 1, 2, . . .).
Figure 2 gives plots of the function R̄(ri) for the case rf0 < rf for fixed values s0

2 = 0.7, rn = 0.5 m,
α2 = 0.16, α0 = 50, rw = 0.1 m, R0

n = 4 Ω · m, and R0 = 1 Ω · m, and different values of s0
0. The plots illustrate

the effect of the gas content of the formation on the shape of the electromagnetic sounding curves.
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As an example of practical application of the proposed approach, Fig. 3 gives interpretation of data from
field measurements (shown by points on the plot) using a five-sonde HFIIL device. The hole was drilled in the
Severoyur’evsk field of Surgutneftegaz. The data correspond to a depth of 2948.7 m. The following formation
characteristics were obtained: oil content s0

2 = 0.843, gas content s0
0 = 0.09, radius of the oil displacement front

rf = 1.02 m, radius of the gas displacement front rf0 = 0.7 m, and radius of volume invasion rn = 0.74 m. The
standard deviation of the readings from the theoretical curve is 1.35%.

Conclusions. It is shown that as a result of drilling vertical boreholes in productive strata containing
three immiscible phases: oil, gas, and a certain amount of mineralized native water, the electric resistance in the
near-well zones can be written as a piecewise constant function of the radial coordinate. This function generally
consists of four steps, the lower of which is detected by sondes as a resistivity annulus, i.e., a zone with decreased
induction resistivity. Calculations show that even a small amount of gas in the formation has a significant effect on
the electromagnetic log shape. In particular, for small s0

0, the induction resistivity curves, have a local maximum in
the neighborhood of the centers of sensitivities of the first two sondes in HFIIL devices, along with the minimum
characteristic of oil formations.
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1. V. I. Pen’kovskii and M. I. Épov, “Some theoretical aspects of the well logging electromagnetic data refinement,”
Dokl. Ross. Akad. Nauk, 390, No. 5, 685–687 (2003).
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